With this function you can construct your weekly calendar of lessons, which is customized on the basis of the courses that you intend to follow. Warning: the personal schedule does not replace the presentation of the study plan! It's an informal tool that can help you better manage the organization of class attendance before the study plan presentation. After the study plan presentation we recommend you to use the Lecture timetable service in your Online Services.
To create your customized schedule follow these instructions:
- Click on the "Enable" link to proceed. You will be asked your surname and first name in order to determine your alphabetic grouping.
-
To add or remove courses from your personal schedule, use the small icons which are found next to the courses:
addition of the course
removal of the course
selection of the section of the Laboratory of Architecture (Note: the effective area in which the teaching will be carried out will be determined after the presentation of the Study Plans)
-
The sidebar on the left displays the number of lessons included in schedule.
There are also these commands:
View the schedule: allows the viewing of the weekly synoptic schedule
Delete the schedule: cancels the selections made
When you have finished the entry, you can print the calendar you have made.
Semester (Sem) | 1 | First Semester | 2 | Second Semester | A | Annual course | Educational activities | C | Similar or integrative activities | Language |  | Course completely offered in italian |  | Course completely offered in english | -- | Not available | Innovative teaching |  | The credits shown next to this symbol indicate the part of the course CFUs provided with Innovative teaching. These CFUs include:
- Subject taught jointly with companies or organizations
- Blended Learning & Flipped Classroom
- Massive Open Online Courses (MOOC)
- Soft Skills
|
|
Academic Year
|
2020/2021
|
School
|
School of Civil Environmental and Land Management Engineering School of Industrial and Information Engineering
|
Name
|
(Master of Science degree)(ord. 270) - MI (495) Geoinformatics Engineering
|
Track
|
GEC - Geoinformatics Engineering - CS
|
Programme Year
|
1
|
ID Code
|
053799
|
Course Title
|
GEOSPATIAL DATA ANALYSIS [I.C.]
|
Course Type
|
Integrated Course
|
Credits (CFU / ECTS)
|
10.0
|
Semester
|
First Semester
|
Course Description
|
The course deals with a variety of predicting techniques applied to environmental variables expressed as functions of time, of space or both (signals, fields or time varying fields). Applications can be found in a large number of domains, hydrology, geophysics, geodesy, oceanography, just to mention those close to the environmental engineering.
The predicting techniques are mainly based on the idea that close in time and space values of the phenomena under study are similar, or, in other words, have a smooth behavior; this idea is expressed in different forms also according to the kind of modeling: deterministic or stochastic.
The proposed course aims at giving the mathematical tools needed to perform the data analysis by selecting and organizing the topics according to a possible realistic processing flow: the pre-processing phase techniques, a first processing phase consisting in a deterministic de-trending and a final processing refinement by a stochastic analysis of the residuals.
In more detail, pre-processing includes outlier detection and removal, clustering and gridding. Deterministic processing includes least squares interpolation with linear combination of known functions (Spline interpolation and Discrete Fourier Transform are specifically described): hybrid norm or Tychonov interpolation is described in this context. Finally, the stochastic modeling of the residuals is introduced with the concepts of stationary signals and homogeneous and isotropic random fields, empirical variogram and covariance function estimation and the linear prediction with kriging techniques.
The course is complemented by a number of laboratory sessions, using R and Matlab software suites, devoted to the implementation of the studied techniques.
|
Scientific-Disciplinary Sector (SSD)
|
Educational activities
|
SSD Code
|
SSD Description
|
CFU
|
C
|
ICAR/06
|
SURVEYING AND MAPPING
|
10.0
|
|
|