logo-polimi
Loading...
Manifesto
Struttura Corso di Studi
Cerca/Visualizza Manifesto
Dati Insegnamento
Scarica il Manifesto
Regolamento didattico
Consulta il Regolamento
Elenco docenti
Strutture didattiche
Dati quantitativi
Internazionalizzazione
Orario Personalizzato
Il tuo orario personalizzato è disabilitato
Abilita
Ricerche
Cerca Docenti
Cerca Insegnamenti
Cerca insegnamenti degli Ordinamenti precedenti al D.M.509
Erogati in lingua Inglese

Legenda
Semestre (Sem)
1Primo Semestre
2Secondo Semestre
AInsegnamento Annuale
Attività formative
BCaratterizzanti
Lingua d'erogazione
Insegnamento completamente offerto in lingua italiana
Insegnamento completamente offerto in lingua inglese
--Non definita
Didattica innovativa
I CFU riportati a fianco a questo simbolo indicano la parte dei CFU dell'insegnamento erogati con Didattica Innovativa.
Tali CFU riguardano:
  • Cotutela con mondo esterno
  • Blended Learning & Flipped Classroom
  • Massive Open Online Courses (MOOC)
  • Soft Skills
Dati Insegnamento
Contesto
Anno Accademico 2019/2020
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Corso di Studi (Mag.)(ord. 270) - MI (481) Computer Science and Engineering - Ingegneria Informatica
Piano di Studio preventivamente approvato T2A - COMPUTER SCIENCE AND ENGINEERING
Anno di Corso 1

Scheda Insegnamento
Codice Identificativo 055210
Denominazione Insegnamento ONLINE LEARNING AND MONITORING
Tipo Insegnamento Monodisciplinare
Crediti Formativi Universitari (CFU) 5.0
Semestre --
Programma sintetico This course provides an overview of Machine Learning (ML) methods that are meant for streaming data and that force the learner to operate in an online or incremental manner. These settings are often encountered in real-world applications, e.g., to select sponsored links for Internet advertising, or to detect frauds in credit card transaction. The online setting poses relevant challenges to classical data-driven solutions since i) the model has to integrate new pieces of information as soon as they become available, ii) the learning algorithm has to adapt to the current operating conditions, iii) the learning algorithms have to be computationally efficient, to be executed in real-time.
Settori Scientifico Disciplinari (SSD)
Attività formative Codice SSD Descrizione SSD CFU
B
ING-INF/05
SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
5.0

Scaglione   da (compreso):  A   a (escluso):  ZZZZ
   Insegnamento Annuale    A   
DataDove09:0010:0011:0012:0013:0014:0015:0016:0017:0018:0019:0020:00
Lunedì
Martedì
Mercoledì
Giovedì
Venerdì
Sabato
manifesti v. 3.1.9 / 3.1.9
Area Servizi ICT
05/12/2019