logo-polimi
Loading...
Manifesto
Struttura Corso di Studi
Cerca/Visualizza Manifesto
Dati Insegnamento
Scarica il Manifesto
Regolamento didattico
Consulta il Regolamento
Elenco docenti
Strutture didattiche
Dati quantitativi
Internazionalizzazione
Orario Personalizzato
Il tuo orario personalizzato è disabilitato
Abilita
Ricerche
Cerca Docenti
Cerca Insegnamenti
Cerca insegnamenti degli Ordinamenti precedenti al D.M.509
Erogati in lingua Inglese

Legenda
Semestre (Sem)
1Primo Semestre
2Secondo Semestre
AInsegnamento Annuale
Lingua d'erogazione
Insegnamento completamente offerto in lingua italiana
Insegnamento completamente offerto in lingua inglese
--Non definita
Didattica innovativa
I CFU riportati a fianco a questo simbolo indicano la parte dei CFU dell'insegnamento erogati con Didattica Innovativa.
Tali CFU riguardano:
  • Cotutela con mondo esterno
  • Blended Learning & Flipped Classroom
  • Massive Open Online Courses (MOOC)
  • Soft Skills
Dati Insegnamento
Contesto
Anno Accademico 2018/2019
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Corso di Studi (Mag.)(ord. 270) - MI (481) Computer Science and Engineering - Ingegneria Informatica
Piano di Studio preventivamente approvato T2A - COMPUTER SCIENCE AND ENGINEERING
Anno di Corso 2

Scheda Insegnamento
Codice Identificativo 055129
Denominazione Insegnamento DATA AND INFORMATION QUALITY
Tipo Insegnamento Monodisciplinare
Crediti Formativi Universitari (CFU) 5.0
Semestre Insegnamento Annuale
Programma sintetico The course introduces the basic concepts, models and techniques of the data quality. lt aims to provide the tools to assess and improve the quallty of data used in different applications and contexts in arder to avoid errors and inefficiencies. Data errors, inconsistencies or delays often negatively affect the output of the processes (from business processes to pure computational process). Most of the times these problems are due to the poor quality of the data used. Such issue is perceived as important in different fields and for different data sources (e.g., structured databases, logs, social media content, sensor values). One of the main goals of Data Quality research is to assess and eventually increase the reliability and value of the data in use. In recent years, severaI comprehensive methodologies for the Data Quality management have been proposed. They include the techniques and procedures to analyze data quality problems, define Data Quality dimensions, measure and improve data quality levels. This course aims to: - introduce the basic elements of Data Quality management; - previde an overview of the current techniques used to assess the most used data quality dimensions in different data sources, i.e., accuracy, precision, completeness, timeliness and consistency. The course shows how the formulas and methods used for assessment vary on the basis of the type of data sources and consequently on the type of data, e.g., numerical vs. text values, structured vs. unstructured data; - discuss the main data quality issues in data fusion: duplicate detection and conflict resolution; - illustrate the techniques to improve data quality levels. The course presents both value-based improvement (e.g., data cleaning) and process-based improvement techniques; - discuss the main data quality open issues in new field such as IOT and big data.

Orario: aggiungi e rimuoviScaglioneDocenteLingua offertaProgramma dettagliato
Da (compreso)A (escluso)
------Docente non definito--
manifesti v. 3.1.9 / 3.1.9
Area Servizi ICT
18/11/2019